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Abstract. We present in this paper a novel approach for 3D/2D in-
traoperative registration during neurosurgery via cross-modal inverse
neural rendering. Our approach separates implicit neural representation
into two components, handling anatomical structure preoperatively and
appearance intraoperatively. This disentanglement is achieved by con-
trolling a Neural Radiance Field’s appearance with a multi-style hyper-
network. Once trained, the implicit neural representation serves as a
differentiable rendering engine, which can be used to estimate the sur-
gical camera pose by minimizing the dissimilarity between its rendered
images and the target intraoperative image. We tested our method on
retrospective patients’ data from clinical cases, showing that our method
outperforms state-of-the-art while meeting current clinical standards for
registration.

1 Introduction

The use of surgical navigation techniques through patient-to-image registration
has become a standard practice in neurosurgery [14]. It allows neurosurgeons to
visualize preoperative imaging during the operation, enabling them to achieve a
maximal safe tumor resection that is highly correlated with patients’ chances of
survival [21] and has been shown to reduce risks of postoperative neurological
deficits [2]. In this paper, we address patient-to-image registration in neuro-
surgery as a 6-degrees-of-freedom (DoF) pose estimation problem. This process
involves aligning preoperative Magnetic Resonance (MR) images with intraoper-
ative surgical views of the brain surface revealed after a craniotomy and acquired
using a camera. Different from previous approaches [10, 20, 15, 6, 17, 5], our pro-
posed method rely solely on imaging already available in the operating room,
eliminating the need of cumbersome and time-consuming imaging acquisitions
or optical tracking systems.

In most cases, tackling 3D/2D registration in surgery involves bridging the
preoperative to intraoperative modality gap and resolving 3D to 2D projection
ambiguities. 3D shape reconstruction of surgical scenes has been proposed as a
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way to tackle both issues at once [22]. They provide a modality-agnostic 3D sur-
face representation of the surgical scenes (3D point clouds or meshes), and re-cast
the 3D/2D registration as a 3D-3D point set registration problem where robust
methods exist [22]. Other approaches rely on landmark-based matching [13, 3, 9],
where anatomical landmarks, extracted from both modalities can act as image
abstractions. Iterative registration methods can then be applied with a closed-
form when landmarks are paired which often involve surgical pointers, tracking
systems, or in-vivo markers [13, 3, 9].

During neurosurgery, the brain surface is revealed and viewed using a sur-
gical camera (microscope), and although the field of view is limited w.r.t other
organs where a larger part of the organ is visible, it has the advantage of hav-
ing visible vessels at the cortical level. These vessels have been used as salient
sources of information to drive 3D/2D registration. In [4], segmentations of cor-
tical vessels are used to drive a 3D/2D non-rigid registration. Instead of using
segmentations, the authors in [13] proposed to manually trace vessels at the
brain surface that match preoperative scans. This method, however, involves a
tracked pointer. Other methods proposed to pre-compute the set of plausible
transformations preoperatively, using atlas-based approaches [23] or by learning
to estimate poses and appearances [3]. However, they are trained in a patient-
specific manner on a pre-defined set of transformations and may fail with out-of-
distribution transformations. Outside of surgical applications, the field of com-
puter vision has seen the emergence of differentiable rendering [7] and Neural
Radiance Fields (NeRFs) [16] making approaches for 6-DoF pose estimation more
robust. For instance, methods such as iNeRF [26], PI-NeRF [11], and Parallel
Inversion [12] showed that implicit neural representations outperform conven-
tional regression-based methods. These methods, however, are not designed for
multimodal registration, where the appearance of the learned representations
differs from the one of the target images, as is the case for intraoperative regis-
tration. Although NeRFs have recently been used for 3D reconstruction of endo-
scopic scenes demonstrating remarkable performances [25, 28], their utilization
for multimodal registration remains unexplored.

Contribution In this work, we propose a novel 3D/2D registration approach for
single-view neurosurgical registration using implicit neural representations. We
introduce a new formulation that separates NeRFs into structural and appear-
ance representation, where the anatomical structure is learned preoperatively
and appearance is adapted intraoperatively. This is achieved by training a hy-
pernetwork that controls the appearance of the NeRF while leaving its learned
representation of the anatomy untouched. Given a single intraoperative image,
the hypernetwork crosses the modality gap and enables the NeRF to solve the
6-DoF pose estimation problem. Experiments on synthetic and real data demon-
strate the effectiveness of the proposed approach, outperforming the state-of-the-
art methods.
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Fig. 1: Left (preoperative): We use a NeRF to first learn density/anatomy (or-
ange) from a mesh M extracted from an MR scan, then learn single-shot style
adaptation (blue) through a hypernetwork h while freezing the rest of the NeRF,
keeping the previously learned density fd fixed. Right (intraoperative): Iterative
pose estimation on target I. The trained NeRF and hypernet (green highlights)
are used as style-conditioned neural rendering engine using ray casting, with f
adapted to the appearance of the intraoperative registration target I through
the hypernetwork h.

2 Methods

2.1 Problem Formulation & Overview

Given a preoperative surface mesh M of the craniotomy area and an intraopera-
tive image I obtained from a surgical microscope, we seek to determine the pose
P ∈ SE(3). This pose minimizes a loss function L(P|I,M), quantifying the dis-
crepancy between the observed intraoperative image and the preoperative mesh
M when positioned and oriented according to the pose P.

We approach the problem as an optimization in 2D image space. Our method
minimizes the loss between I and images rendered from a continuous and dif-
ferentiable neural representation f of the craniotomy area. The density of f is
learned preoperatively from M and its appearance is controlled intraoperatively
by I. This approach effectively addresses the 3D-to-2D registration problem by
using f to render 2D images based on the anatomy learned from M. It also
bridges the modality gap by incorporating intraoperative appearance condition-
ing on I. We therefore reformulate the optimization problem with our neural
representation f and an image-based loss Lrgb, yielding:

P̂ = argmin
P∈SE(3)

Lrgb(I, f(P|I,M)) (1)

Given that f is differentiable with respect to P, we can find P̂ through
iteratively rendering f(P|I,M) and optimizing P.
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2.2 Bridging the Domain Gap via Hypernetwork Multi-Style NeRF

NeRF Background. A Neural Radiance Field (NeRF) [16] represents a con-
tinuous neural representation of a 3D scene. For our method, we follow Instant-
NGP [18], a fast NeRF based on hash-grid encodings. The NeRF consists of
a density (structure) and a color (appearance) component, evaluating a single
point and viewing direction in space. They are mathematically described by the
following equations:

σ(x), z(x) = fd(x; θfd), (2)

where σ(x) is the density and z(x) is an intermediate representation used as
input for the RGB component, and

c(x,d) = fc(z(x),d; θfc), (3)

where the color c depends on z(x) and the viewing direction d. Both components
consist of a Multilayer Perceptron (MLP), resulting in two sets of parameters,
θfd for density and θfc for color. In practice, each component has a parametrized
input encoding function, whose parameters are omitted here for clarity.

The continuous neural representation allows for rendering images by casting
rays, evaluating the NeRF along each ray’s path, and accumulating RGB values
according to densities. For our method, NeRF serves as a neural renderer encod-
ing our 3D mesh M. This differs from traditional mesh representations since it is
fully differentiable and has learnable disentangled components for structure fd
and appearance fc. Both aspects are key to our method, the former for iterative
pose estimation, the latter to bridge the domain gap to I.

Training the Hypernetwork Multi-Style NeRF. First, we train a NeRF
following Eq. 2 and Eq. 3 on a dataset from the preoperative MR-derived surface
mesh M. The objective is to capture the anatomical structure with high fidelity,
resulting in a NeRF that faithfully replicates the brain surface from the MRI.

We introduce a hypernetwork that enables adapting to the intra-operative
image appearance in real-time using only one single image. The hypernetwork,
that we denote h, takes the form of a multi-head MLP and is trained to set the
parameters θfc of fc based on the appearance of I, leaving the structure, encoded
in fd, untouched. To train h, we use Neural Style Transfer (NST) to generate
multiple training datasets by stylizing M using a set N of style images {Ji}Ni=1

(obtained from other surgeries). We combine two NST approaches, WCT2 [27] for
its strong preservation of semantic, and STROTSS [8] for a more photorealistic
style. This changes the NeRF formulation to the following.

σ(x), z(x) = fd(x; θ̂fd), (4)

c(x,d) = f i
c(z(x),d;h(Ji; θh)), (5)

where only h is trained to learn θh, while θ̂fd has already been learned in the pre-
vious step and remains fixed. The whole pipeline is shown in Fig. 1. In practice,
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h uses a binned histogram of Ji instead of the whole image, since the structural
information is already provided by fd, allowing for simple low-dimensional color-
based features. All training is done preoperatively, implemented in the Nerfstudio
environment [24] following their Pytorch [19] implementation of Instant-NGP.

2.3 Intraoperative Registration

During surgery, assuming that camera intrinsics are known, we use fc and fd for a
rendering engine f that renders images via ray casting. Thus we can reformulate
the optimization problem in Eq. 1 as:

P̂ = argmin
P∈SE(3)

Lrgb
(
I, f(P; θ̂fd , h(I; θ̂h))

)
(6)

where P̂ represents the optimal camera pose, and Lrgb denotes the loss function
comparing the intraoperative image I with the rendered image. I appears twice,
as the target image, and as the input to h to condition f to approximate the
appearance of I. This is key in our method since it allows us to bridge the
modality gap and express Lrgb as a conventional RGB image loss that takes the
form of a relative L2 loss [12].

The differentiable nature of f allows computing ∂L
∂P , thereby enabling iter-

ative pose refinement via gradient descent. Multiple recent works propose effi-
cient methods to solve Eq. 6 [11][12][26]. We choose Parallel Inversion [12] that
achieves state-of-art pose accuracy.

3 Experiments and Results

Datasets. We test our method on 5 clinical cases, each with its preoperative T1
MRI scan and corresponding surgical microscope image, except for case 5 with
only a T1 MRI scan. To stylize meshes, we rely on a small dataset of N = 15
surgical microscope images from different cases, including the 4 corresponding
to our clinical test cases that have a surgical microscope image. We build one
dataset per case. To train the NeRF, we generate 100 images per style with
their respective camera poses. For each case, this results in 1500 images that
show the stylized brain surface mesh in 15 styles with 100 images and poses for
each style. Additionally for case 5, for each of the 4 styles that correspond to
the other clinical cases, we generate 50 random images and poses as test targets
for registration.

View Synthesis. To demonstrate that our hypernetwork produces plausible
appearances, we synthesize 3 views from different poses on one of the clinical
cases, as illustrated in Fig. 2. These syntheses are obtained by training on the
dataset for this case while omitting its style. Our method shows qualitatively
photorealistic results that respect the anatomy of the case while being similar
in appearance.
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Fig. 2: An example of synthesis from 3 different poses on one of the clinical
cases. First: image obtained from the MRI with surgical microscope image I.
Remaining images: synthesis with f , style inferred by hypernetwork h on I.

Pose Estimation on Synthetic Targets. To evaluate our method on a larger
number of registration targets, we use case 5 and generate 50 targets for 4
different styles (corresponding to the clinical test cases), yielding 200 targets
in total. The hypernetwork is trained on the remaining 11 styles. For each style,
the hypernetwork conducts a singular inference to determine the style-specific
appearance, which is then utilized in the pose estimation for all 50 targets within
that style. The results are shown as accuracy-threshold curves (Fig. 3), which
indicate the proportion of predicted poses that fall within a given error threshold.

Style variance Pose sampling Rotations (deg) Translations (mm)

Fig. 3: Evaluation on synthetic targets (from left to right): cross-correlation ma-
trix of Gram-similarity score of all styles showing pairwise style similarity and
dissimilarity; pose distribution (blue: training set, red: test set); and accuracy-
threshold curves for rotation and translation.

Fig. 3 shows that rotation and translation errors vary depending on the style
of the targets. While 96% of poses estimated for Style 3 and Style 4 targets have
a rotation error below 5◦, it is 76% for targets of Style 2. Similarly, 96% of poses
estimated for Style 4 and 90% of poses estimated for Style 3 have a translation
error below 5mm, whereas the pose estimations on targets of Style 2 reach 78%.
Style 1 on the other hand has 52% of poses with translation error below 5 mm
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Table 1: Comparative Registration Error
Metrics / Methods Style1 Style2 Style3 Style4 Ours MR-NeRF Reg. Reg. ID

ATE (mm) 4.17 3.24 2.56 1.96 3.12 10.12 13.31 6.29
ART (deg) 4.53 3.25 2.41 1.84 3.01 11.30 8.78 5.70
Outliers (%) 22 6 0 0 7 46.50 58 4.52

and 54% of poses with rotation error below 5◦. This can be explained by the
small number of style images in the hypernetwork dataset (N = 11).

Comparison with Baseline and State-of-the-art. We evaluate our method
Ours against a baseline and the state-of-the-art method. The baseline is our
NeRF trained exclusively on images and poses from the MRI visualized as volume
rendering, referred to as MR-NeRF. The state-of-the-art method is a style-
invariant regressor [3]. We used case 5 data with 11 styles of 100 images and
poses each, and evaluated on a test set of 4 styles of 50 images and ground-
truth poses each. We trained and tested two versions of the regressor, Reg.
with the described data also used for MR-NeRF and Ours, and Reg. ID,
with a modified training and test split with poses in-distribution, following the
method guidelines. The pose distribution is visualized in Fig 3, where red poses
correspond to the test set and blue ones to the training set. The style distribution
is also shown in Fig 3 with the cross-correlation matrix of Gram-similarity scores,
a common similarity measure used in Neural Style Transfer.

For all methods, we report the Average Translation Error (ATE) and Average
Rotation Error (ART) in Tab. 1. We also define outliers as poses with a rotation
error larger than 20◦. Outliers are excluded from ATE and ART and reported
separately as a percentage of the total number of test poses. For Ours, we
additionally report results on all styles individually.

Our method outperforms both baseline and state-of-the-art and achieves ATE
and ART of 3.12mm and 3.01◦ that meet clinical needs [1]. We also achieve
style-invariance for Style 2, Style 3, and Style 4. However, we do not achieve
style-invariance for Style 1 with a high number of outliers, in line with the
Accuracy-threshold curve experiment. Given that the underlying anatomy and
target poses are the same across all styles, this indicates that the appearance
approximated by our hypernetwork is not sufficiently similar enough to Style 1
to allow for a robust pose estimation with gradient descent. The MR-NeRF
is not able to cross the modality gap to the target images while Reg. does
not generalize to out-of-distribution target poses. Only when withholding and
evaluating part of the more homogeneous training set does the performance of
the regressor improve with Reg. ID as shown in Tab. 1.

Tests on Clinical Cases. We evaluate each case separately and exclude its
style from the training set. The cases represent different craniotomy openings
with varied appearances and anatomies. We provide qualitative results with a
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visual assessment of each case in Fig. 4. Except for the case in row 3 where
we observed a very early local minimum in the optimization, all other pose
estimations reach a visually correct registration.

Fig. 4: Tests on real cases, one case per row. Left column: target images from the
surgical microscope. Middle columns: 3 optimization steps: early-optimization,
mid-optimization, and final pose estimation. Right column: Intraoperative image
with vessel-overlay of our estimated pose.

4 Conclusion

In this paper, we presented a novel 3D/2D intraoperative registration approach
for neurosurgery by introducing a cross-modal inverse neural rendering that dis-
entangles NeRF representation into structure and appearance adapting thereby
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NeRFs to the preoperative and intraoperative settings. We presented experi-
ments with qualitative and quantitative results on synthetic and retrospective
real patient data, showing that our method outperforms the state-of-the-art, per-
forms well in real conditions, and meets clinical needs. Future work will extend
this representation to handle deformation. This can be achieved by modifying
the density component of our implicit neural representation to be robust to
non-rigid transformations.
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